
An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

1

An Explanation of the Architecture of the
 MMS Standard

written by:
Herbert Falk Jeffrey Robbins

 SISCO Cycle Software, Inc.

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

2

Reviewing the Manufacturing Message Specification (MMS ISO/IEC-9506) can be overwhelming. The
amount of information, and the ISO format, often cause the uninitiated to overlook the underlying
rationale and design methodology. Losing the forest for the trees, most reviewers tend to concentrate on
the actual details of the specification.

The creators of the standard spent a great deal of time attempting to format the document so that MMS
implementors could easily find the details. However, in so doing, the overview and concepts that led to
the particular format and services has been glossed over. This document will attempt to document the
architecture of MMS in terms of its general model, objects, methods, and services.

Architecture

The MMS specification assumes an inherent understanding of the scope of the problem space that is being
addressed by MMS. In general, the solution (MMS) provides for peer-to-peer “real-time”
communications over a network. During the design of MMS, an initial attempt to standardize “real-
world” devices (e.g. Programmable Logic Controllers, Numerical Controllers, and Robots) was attempted.
The “real-world” operational characteristics of these various devices were so different that consensus on a
single “real-world” device model could not be reached. The lack of consensus, coupled with the desire to
allow MMS to be applied to solve problems areas, forced the creators of MMS to work on standardizing
observable network behavior only.

The decision to standardize behavior, without direct correlation to “real-world” devices, caused the
creation of a “virtual” model. The underlying assumptions of the MMS model, and its objects, are that
they exist only when network communications are operating within a MMS Context.

The Virtual Manufacturing Device (VMD) is the MMS object which has at least one network-visible
address. The addressing allows for an MMS Context to be negotiated between two peer applications.
Once the context is established, the standard specifies the details of the MMS objects, attributes,
hierarchy, and methods for the objects.

The following table details the MMS objects and their intended use:

MMS Model Object Description

Context The context object represents the attributes that are exchanged so that the
MMS behavior is known to both cooperating applications prior to attempting to
use other MMS services.

Virtual Manufacturing
Device

The VMD itself can be viewed as the object in which all other MMS objects are
contained. It has attributes that reflect general capabilities and a general set of
methods that are inherited by all other MMS objects.

Named Variables This class of object is, in general, used for “real-time” data exchange. Its
intended use is for data monitoring, non-historic data reporting, and allowing
data to be reported in an unsolicited fashion.

Named Variable List This class of object is used to aggregate, into a list, other variable objects. It
differs from the Named Variable object in that each element in the list (when
accessed) returns its own success or failure.

ScatteredAccess This class of object is, in general, used for “real-time” data exchange. It differs
in capability from the Named and Named Variable List objects through its
external behavior. The differentiating behavior is its ability to aggregate other
variable objects and have the external appearance of creating a single coherent
variable. The intended use of this object is to allow non-MMS variables to be

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

3

MMS Model Object Description

aggregated into complex MMS objects allowing for the migration of legacy
protocols.

Named Type This class of object is used to create a dictionary of well known, and re-usable,
data type definitions which allow complex variables to be created. It allows the
consistent definition of data representation and the associated range of values
to be defined.

Semaphore This class of object is intended to be used for the resolution of object/resource
contention. The characteristics of this object were developed with the UNIX
semaphore/token model as the basis.

Event Condition This class of object is used to allow network applications to be able to
determine the state of a condition (Active, Inactive, or Disabled). The
specification does not specify the local processing required to transition the
state of the object, but how to use the object to trigger network activity based
upon the state transitions.

The combination of EventCondition, EventAction, and EventEnrollment object
use is intended for the construction of dynamic report by exception network
scenarios.

Event Action Instances of this class of object allows for a set of potential network actions to
be defined. These actions are then linked to a particular EventCondition
transition through the use of an EventEnrollment object.

The combination of EventCondition, EventAction, and EventEnrollment object
use is intended for the construction of dynamic report by exception network
scenarios.

Event Enrollment Instances of this class allow a network application to define that a particular
EventAction object be performed upon a given EventCondition state transition.
Further , it allows the specification of which network application should be
notified of the occurrence of the state transition.

The combination of EventCondition, EventAction, and EventEnrollment object
use is intended for the construction of dynamic report by exception network
scenarios.

Journal This class of object is used for the exchange of historic or archived information.
The object allows for data and network (MMS) transactions to be written into a
“log” type of format that allows for the creation of a Sequence of Events (SOE)
recording function. Likewise, the “logged” information can be retrieved so that
applications can regenerate information whose time sequencing is important.

Domain This class of object has been left intentionally vague within the MMS
specification. The standard states that domains represent resources. Therefore,
the first question is what is the definition of a “resource”. The intended
definition of resource was any aggregation of objects, data, etc... required to
perform a single function. It can contain execution instructions, MMS objects,
and other information. In general, the concept was borrowed from the process
control industries where batch processing needed to be facilitated.

This object allows executive code (programs) and configuration settings to be
uploaded/downloaded over the network.

Program Invocations The behavior of this object was borrowed from the concept of a UNIX
Execution Thread. It is the object that is used to start and stop remote
application processes.

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

4

MMS Model Object Description

Operator Station This object facilitates a poor-man’s Telnet exchange of information. The use
of this object is restricted to the exchange of simple text messages for human
operators.

File This class of object is to be used to transfer binary file information. It does not
provide record access but transfers files in their entirety.

Each of the fifteen (15) MMS model objects, except for Operator Station, have five methods that are in
common. These are:

MMS General Methods Description

Get This method is used to obtain the value or contents of a specified object.
Set This method is used to write/put value or contents into a specified object.
QueryAttributes This method is used to obtain structure or capability information of a

specified object.
Create This method allows objects of particular classes to be instantiated (come into

existence).
Delete This method allows instantiated objects to be destroyed (removed from

existence).

MMS provides a complete architecture for solving distributed automation problems. The MMS
architecture is based on a model that has specific applicability to real world problems by providing
meaningful objects. These meaningful objects provide the semantic capability of MMS and correspond to
specific functions of real Intelligent Electronic Devices (IEDs) and applications. As we have seen, each
of these MMS model objects inherits the basic five methods. The methods are implemented via specific
services which carry the actual parameters required for the specific object.

This specification in terms of services can be mapped onto current object-oriented methodology by
viewing each object-specific service as an overload on the inherited method -- however, the devil is in the
details of what you mean by “overload”. We must not overlook the important differences between doing a
Get on a variable object and doing a Get on a journal object. Each MMS model object is different enough
to warrant being distinct from the other objects. These differences are captured in the details of the
services and parameters that implement each method. We can examine this in depth by taking two model
objects, a variable list and a journal, and compare the MMS specification of the Get method.

In the case of a MMS variable list, the Get method maps onto the Read service. Let us examine in depth
one phase of the Read service, the Read-Request:

The Read-Request lets us Get one or more variables from a VMD. It starts off with a Boolean that lets us
choose how we want the VMD to return the result, with the requested variable specification or without it.
This is tagged as IMPLICIT and also DEFAULTs to FALSE -- we don’t normally need to be reminded
about what we requested when we get a response!

Read-Request ::= SEQUENCE
 {
 specificationWithResult [0] IMPLICIT BOOLEAN DEFAULT FALSE,
 variableAccessSpecification [1] VariableAccessSpecification
 }

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

5

The Read-Request then refers to a VariableAccessSpecification which looks like this:

Here we can see that we have a choice between an enumerated list of variables (and optional components
called AlternateAccess) or a named variable list object. This is another key detail of the Get method
which MMS builds right into the model object. It is worth going in one more level of detail to see what a
VariableSpecification looks like in case we want to enumerate our variables:

Here we can see that we also have choice among names, addresses, descriptions of both type and address
and also scattered descriptions. The full extent of the Get method for a variable list is revealed if we
examine what the TypeSpecification from this looks like:

VariableAccessSpecification ::= CHOICE
 {
 listOfVariable [0] IMPLICIT SEQUENCE OF SEQUENCE
 {
 variableSpecification VariableSpecification,
 alternateAccess [5] IMPLICIT AlternateAccess OPTIONAL
 },
 variableListName [1] ObjectName
 }

VariableSpecification ::= CHOICE
 {
 name [0] ObjectName,
 address [1] Address,
 variableDescription [2] IMPLICIT SEQUENCE
 {
 address Address,
 typeSpecification TypeSpecification
 },
 scatteredAccessDescription [3] IMPLICIT ScatteredAccessDescription,
 invalidated [4] IMPLICIT NULL
 }

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

6

What we can see here is that when we want to do the Get method on a variable list, MMS lets us drill all
the way down to a detailed specification of recursive data structures which allows access to entire pieces
of data, data scattered over multiple memory locations, and specific pieces of data contained within a
IED. None of this depends on application logic in either the host application or the IED protocol
implementation; it is built in to the MMS software!

Now let us compare this Get to a Get of a Journal object. MMS has a ReadJournal service; we will focus
on the request phase:

TypeSpecification ::= CHOICE
 {
 typeName [0] ObjectName,
 array [1] IMPLICIT SEQUENCE
 {
 packed [0] IMPLICIT BOOLEAN DEFAULT FALSE,
 numberOfElements 1] IMPLICIT Unsigned32,
 elementType [2] TypeSpecification,
 },
 structure [2] IMPLICIT SEQUENCE
 {
 packed [0] IMPLICIT BOOLEAN DEFAULT FALSE,
 components [1] IMPLICIT SEQUENCE OF SEQUENCE
 {
 componentName [0] IMPLICIT Identifier OPTIONAL,
 componentType [1] TypeSpecification
 }
 },
-- Simple Type --------------------- Size ---------
 boolean [3] IMPLICIT NULL,
 bit-string [4] IMPLICIT Integer32,
 integer [5] IMPLICIT Unsigned8,
 unsigned [6] IMPLICIT Unsigned8,
 floating-point [7] IMPLICIT SEQUENCE {
 format-width Unsigned8,
 exponent-width Unsigned8
 },
 real [8] IMPLICIT SEQUENCE {
 base [0] IMPLICIT INTEGER (2|10),
 exponent [1] IMPLICIT INTEGER OPTIONAL,
 mantissa [2] IMPLICIT INTEGER OPTIONAL
 },
 octet-string [9] IMPLICIT Integer32,
 visible-string [10] IMPLICIT Integer32,
 generalized-time [11] IMPLICIT NULL,
 binary-time [12] IMPLICIT BOOLEAN,
 bcd [13] IMPLICIT Unsigned8,
 objId [15] IMPLICIT NULL
 }

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

7

We can see similarities and differences between this request and the Read-Request. Item [4] of this
request is a list of variables we want journal entries about. This seems similar to the Read-Request above,
but the list here is a much simpler sequence of strings. We get none of the flexibility we have in the Read-
Request to access by name or by description. Here the presumption is if you want to key into a journal on
a variable, you had better give the variable a name. In addition to this parameter, the Read-Journal
request lets us access a set of entries falling within a range of time. We can also specify the number of
entries we want.

So for these two MMS model objects -- variable list and journals -- we can see two strikingly different sets
of parameters on the MMS services that implement the Get method. The reader might ask at this
juncture: “OK, I understand the differences, but are the differences a good thing?” Since the differences
are a function of specificity, the question could be recast as a critique of MMS as either being too specific
or not specific enough.

The MMS standard is specific enough to capture a common application protocol that is applicable to a
wide range of applications and equipment and to allow implementors to build real problem solving tools.
Without this specificity, the protocol becomes empty syntax lacking the semantic weight to carry a
significant share of the application burden. Interoperability requires more than syntax; it demands shared
meaning so that real applications can connect to real equipment to solve real problems. However, there is
flexibility allowed within the selection of objects and services that are used to solve a particular problem.

This flexibility leads to the question: Is MMS not specific enough? In a sense, yes. The ambiguity
associated with the application object definitions is intentional. The creators/editors of the MMS standard
realized that expertise required for object and service standardization would need to be supplied from
experts within a given problem domain. Therefore, activities similar to the Electric Power Research
Institute’s (EPRI’s) MMS Forum are required. This type of meeting represents a gathering of experts
within an application area, an industry, or a product category to define specific object types (and possibly
additional parameters) to target the standardized network behavior of MMS into its problem domain.
This allows interoperable mapping of the virtual model onto real equipment. MMS combined with
standard object definitions will allow real business needs to be met in an interoperable and extensible
manner.

ReadJournal-Request ::= SEQUENCE
 {
 journalName [0] ObjectName,
 rangeStartSpecification [1] CHOICE
 {
 startingTime [0] IMPLICIT TimeOfDay,
 startingEntry [1] IMPLICIT OCTET STRING
 } OPTIONAL,
 rangeStopSpecification [2] CHOICE
 {
 endingTime [0] IMPLICIT TimeOfDay,
 numberOfEntries [1] IMPLICIT Integer32
 } OPTIONAL,
 listOfVariables [4] IMPLICIT SEQUENCE OF VisibleString OPTIONAL,
 entryToStartAfter [5] IMPLICIT SEQUENCE
 {
 timeSpecification [0] IMPLICIT TimeOfDay,
 entrySpecification [1] IMPLICIT OCTET STRING
 }
 }

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

8

In conclusion, we have seen that by mapping from method to service/parameters in the ISO/IEC 9506-1
specification, MMS has lent itself to interoperable semantics. In addition, by mapping these
services/parameters into concrete syntax in ISO/IEC 9506-2, MMS has created an interoperable syntax.
By containing both syntax and semantics, the MMS architecture thus provides a completely self-contained
methodology for object-oriented interoperability over the wire.

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

9

Appendix 1 - Table of Methods vs. MMS Services

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

10

Methods
Objects Get Set Query Create Delete

Context Cancel
Reject

Initiate Conclude /Abort

VMD Rename Status/Identify/GetCapabilityList
GetNameListUnsolicitedStatus

Named Variables GetVariableAccessAttributes DefineNamedVariable DeleteVariableAccess

ScatteredAccess GetScatteredAccessAttributes DefineScatteredAccess DeleteVariableAccess

Named Variable List Read
InformationReport

Write GetNamedVariableListAttributes DefineNamedVariableList DeleteNamedVariableList

Named Type GetNamedTypeAttributes DefineNamedType DeleteNamedType

Operator Station Input Output

Semaphore RelinquishControl TakeControl ReportSemaphoreStatus
ReportPoolSemaphoreStatus
ReportSemaphoreEntryStatus
AttachToSemaphore

DefineSemaphore DeleteSemaphore

Domain InitiateUploadSequenceUpload
Segment
TerminateUploadSequence
RequestDomainUpload

InitiateDownloadSequence
DownloadSegmentTerminateDo
wnloadSequence
RequestDomainDownload

GetDomainAttributes LoadDomainContent
StoreDomainContent

DeleteDomain

Program Invocations Start/ Stop/ Resume/ Reset/ Kill GetProgramInvocationAttributes CreateProgramInvocation DeleteProgramInvocation

Event Condition ReportEventConditionStatus AlterEventConditionMonitoring
TriggerEvent

GetEventConditionAttributes DefineEventCondition DeleteEventCondition

Event Action ReportEventActionStatus GetEventActionAttributes DefineEventAction DeleteEventAction

Event Enrollment ReportEventEnrollmentStatus
EventNotification
GetAlarmEnrollmentSummary
GetAlarmSummary

AlterEventEnrollment
AcknowledgeEventNotification
AttachToEventCondition

GetEventEnrollmentAttributes DefineEventEnrollment DeleteEventEnrollment

Journal ReadJournal InitializeJournal
WriteJournal

ReportJournalStatus CreateJournal DeleteJournal

File FileRead ObtainFile
FileRename

FileDirectory FileOpen /FileClose FileDelete

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

11

Appendix 2 - Object Schema of MMS

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

12

Object Schema of MMS

Most MMS model objects have an architectural hierarchy defined. However, many of the objects also
have a associated object SCOPE .

The object SCOPEs, as defined in the MMS specification are:

1. VMD Wide - Objects of this scope are global and are accessible through any association.

2. Domain Specific - Objects of this scope are bound to a particular MMS Domain Object. The objects
are accessible through any association.

3. Association Specific - Objects of this scope are associated with a single association and are not
available through any other association.

The following table shows the MMS model objects with their allowed SCOPEs.

Object Scope
Objects VMD Domain Association-Specific

Named Variable x x x
ScatteredAccess x x x
Named Variable List x x x
Named Type x x x
Semaphore x x
Event Condition x x x
Event Action x x x
Event Enrollment x x x
Journal x x
Domain x
Program Invocation x
Operator Station x

The following diagrams represent a simplified view of the object hierarchy and methods (Association-
Specific relationships are not shown).

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

13

PDU Size
Services Supported

Parameters Supported
MMS Version

Context

Communication Address
Identity
Capabilities
MMS Objects

VMD

Get
Set
QueryAttributes
Create
Delete
Rename

Name
Deletable
Access Method
Constraint
Data Type

Named Variable

Name
Deletable
List of Variables

Named Variable List

Name
Deletable
Type Description

Named Type

Name
Deletable
References

Scattered Access

VMD Scope Variables

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

14

Domain

Name
Capabilities
State
Deletable
Sharable
Content
List of PI

PDU Size
Services Supported

Parameters Supported
MMS Version

Context

Communication Address
Identity
Capabilities
MMS Objects

VMD

Get
Set
QueryAttributes
Create
Delete
Rename

Name
Deletable
Access Method
Constraint
Data Type

Named Variable

Name
Deletable
List of Variables

Named Variable List

Name
Deletable
Type Description

Named Type

Name
Deletable
References

Scattered Access

Domain Specific Variables

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

15

Program
Invocations

Name
State
Reference
Reusable
Monitor
Argument

Start
Stop
Reset
Resume
Kill

Domain

Name
Capabilities
State
Deletable
Sharable
Content
List of PI

PDU Size
Services Supported

Parameters Supported
MMS Version

Context
Communication Address
Identity
Capabilities
MMS Objects

VMD

Get
Set
QueryAttributes
Create
Delete
Rename

Domains and Program Invocations

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

16

PDU Size
Services Supported

Parameters Supported
MMS Version

Context

Communication Address
Identity
Capabilities
MMS Objects

VMD

Get
Set
QueryAttributes
Create
Delete
Rename

Domain

Name
Capabilities
State
Deletable
Sharable
Content
List of PI

Name
Deletable
Class (Token, Pool)
List of Owners
List of Requesters
Event Condition Reference

Semaphore
Name
Station Type

Operator Station

Name
Content Type
Size
Last Modified

File

Semaphores and Files

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

17

PDU Size
Services Supported

Parameters Supported
MMS Version

Context

Communication Address
Identity
Capabilities
MMS Objects

VMD

Get
Set
QueryAttributes
Create
Delete
Rename

Name
Deletable
List of Entry Reference

Journal

Journal Reference
Entry Identifier
Application Process Identification
Time Stamp
Order of Receipt
Information Type

Journal Entry

ANNOTATION
EVENT-DATA
DATA

Information Type

Journals

An Explanation of the Architecture of the MMS Standard

Rev 1.0 - 11/02/95 by Herbert Falk (SISCO) and Jeff Robbins (Cycle Software)

18

PDU Size
Services Supported

Parameters Supported
MMS Version

Context

Communication Address
Identity
Capabilities
MMS Objects

VMD

Get
Set
QueryAttributes
Create
Delete
Rename

Domain

Name
Capabilities
State
Deletable
Sharable
Content
List of PI

Name
Deletable
Class (Token, Pool)
List of Owners
List of Requesters
Event Condition Reference

Semaphore
Name
Station Type

Operator Station

Name
Content Type
Size
Last Modified

File

Event Condition, Action, and Enrollment Objects

